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Bistabil ity Driven by Correlated Noise:  
Functional  Integral Treatment  
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A complete study of non-Markovian effects induced by correlated noise applied 
to a bistable dynamical system is presented. Starting from the exact functional 
integral solution of the stochastic equation, it is possible to show that the 
customary expansion in powers of the characteristic correlation time gives 
wrong asymptotic results. Other approaches based on a Fokker-Planck 
equation with a modified diffusion coefficient also fail in reproducing the right 
long-time behavior of the system. Using a generalized version of instanton 
calculus of functional integrals, explicit expressions of the invariant measure and 
transition time between stable fixed points are obtained, in the limit of small 
noise intensity but arbitrary correlation time. In particular, an original method 
for extracting the collective degrees of motion has been developed. These 
analytical results fit, for a large range of parameters, with numerical 
calculations, giving confidence in the formalism employed. 

KEY WORDS: Stochastic equations; non-Markovian effects; functional 
integral. 

1. INTRODUCTION 

Stochastic equations of the form 

- - f ( x )  + y (1) 

where f(x) generally is a polynomial function and y is a Gaussian noise 
characterized by a correlation function (y(t) y(t'))=a2C(t, t'), are a 
model for a variety of physical problems".' For instance, assume y to be the 
Ornstein-Uhlenbeck process; then 

= --y + b(t) (2) 
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where b(t )  is a white noise with intensity o, and z = 1/a is the characteristic 
correlation time: 

< y ( t )  y(t ')  > = (o'2/2z) e x p ( - - I t -  t ' l / z )  

Combining (1) and (2), we obtain 

Yc = -(or - f ' )  s + ~tf + etb( t) (3) 

which describes the Brownian motion of a particle in a nonlinear 
dissipative medium. Note that when e becomes smaller than f ' ,  dissipation 
is not always positive. In the particular case of a force given by 
f ( x )  = r  3, (3) is the normal form, in the presence of noise, of a system 
undergoing a codimension-2 bifurcation. (3) 

Model (1) also applies to the problem of bound states (4) in a random 
potential in quantum mechanics. Indeed, the Schr6dinger equation 

0" = (Y - E) ~, (4) 

for the wave function ~ and negative energy E < 0 ,  after a change of 
variables 0 -- ~ ' /~,  can be put into the form of a Ricatti equation, 

o' = IEI - 0 ~ + y ( 5 )  

The drift [ E l -  0 2 has a potential function with two fixed points, one stable, 
the other unstable. The escape from the stable fixed point across the 
barrier, and then the rotation number, are governed by the random 
potential. Here, the correlation time is replaced by a coherence length. 

In recent years a great deal of interest has been given to bistable 
dynamical systems perturbed by noise, which, under certain simplifying 
assumptions, are models of lasers or electronic devices. (1'2'6'22'23) Here, the 
noise can either be imposed by an external source or be related to environ- 
mental perturbations. In both cases it has a correlation time 3, and the 
basic question is often how the transition time 0 between two stable fixed 
points changes with 3. Because of the lack of rigorous results on the effects 
of correlated noise on the behavior of bistable systems, a controversy has 
arisen about the validity of approximate models. In particular, different for- 
mulas for the so-called activation rate S(z), defined as l i m ~  0 0 2 In 0, have 
been proposed. (5"21'24) The "decoupling ansatz" of Ref. 21 is often used for 
comparison with numerical results. This ansatz predicts a linear increase of 
the activation rate with 3. However, as we shall demonstrate, S does 
increase as S,-, ~2 for small ~ and as S ~ ~ for large 3, but with a slope that 
markedly differs from the ansatz prediction. 

The essential difficulty in treating Eq. (1) is that, for arbitrary 
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Gaussian processes (y(t)y(t'))=cr2C(l - t'), in contrast to the Langevin 
equation, which is related to the Fokker-Planck equation, it is impossible 
to derive in a closed form a partial differential equation taking exactly into 
account non-Markovian effects. Therefore, methods currently used are 
based on the derivation of a master equation, (5) either by systematic expan- 
sions in terms of noise intensity or correlation time, or by introducing ad 
hoc closure schemes or ansiitze. (6~ However, all of these methods fail to 
describe correctly the long-time dynamics. The point is that the long-time 
behavior involves nonperturbative quantities, dominated by large-deviation 
events, (7) while these schemes are at best asymptotic developments valid at 
short times. 

We take a different point of view: we start from the functional integral 
representation of the transition probability, without trying to derive a 
master equation. ~8~ From this exact formal solution, one may apply instan- 
ton methods to compute relevant quantities, such as the invariant measure 
(stationary probability distribution) and the transition time between two 
fixed points. Rigorous results (7,25) validate the use of this formalism in 
order to obtain the large-deviation asymptotics. Although in the white- 
noise case one can readily obtain the activation rates, explicit estimations 
are much more difficult to achieve in the correlated case. 

In Section 2 we derive the master equation and discuss its validity. In 
Section 3 we briefly review the derivation of the transition probability 
P(X, TI Xo) by means of the integral functional and illustrate how it works 
in the simple case of a linear stochastic process, which can be calculated 
exactly. In the general case, only approximate solutions can be obtained, 
using, for example, the Laplace method to evaluate the relevant paths in 
the limit of small noise intensity. In this way (Section 4) we compute the 
so-called activation rate S, which gives the dominant exponential behavior 
of the stationary probability distribution 

# =  lira P ~ K e x p ( - S / a  2) (6) 
T ~ c o  

In order to make calculations explicit, we take as a model problem a 
bistable system, using a piecewise linear function f(x). Next, we are left 
with the prefactor K calculation. In Section 5, we find the stationary 
probability function of the final point X. This implies taking into account 
the Gaussian fluctuations around the extremal ("classical") trajectory, 
derived from the equation 6 S =  0 (Section 5.1). When the final point is a 
fixed point, a collective degree of motion appears, related to the time trans- 
lation invariance of the classical trajectory. Gaussian fluctuations diverge, 
and then it becomes necessary to extract, by means of a gauge condition, 
the collective coordinate. (9,1~ In Section 5.2 we develop a method of collec- 
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tive coordinates adapted to the nonlocal "actions" S encountered in non- 
Markovian systems. This allows us to compute the stationary probability 
at the unstable fixed point for a bistable piecewise linear system. In Sec- 
tion 5.3, using the same method, we find the passage time from one stable 
point to the other. Finally, a series of numerical simulations is performed 
to compare with analytical results, and an explicit interpolation formula for 
the transition time, useful in practical comparisons, is given (Section 5.4). 
Our conclusions are summarized in Section 6. 

2. M A S T E R  E Q U A T I O N  M E T H O D  

A thorough discussion on the derivation of the master equation 
related to the stochastic process (1) can be found in Refs. 5 and 11. Here 
we are mainly interested in the limits of validity of this treatment; 
then deduce the master equation for weak noise intensity, making the 
underlying assumptions apparent. 

Let us start with the Liouville equation satisfied by the distribution 
function py(X, T) before averaging it over noise probability 

py + O~,(f + y) py = 0 (7) 

We want to find an equation for the transition probability P(x, T), defined 
by the mean value (over noise) (py) .  Making the splitting p y = P + p ,  
where p represents the fluctuating part, we find the system 

P + Oxfe = -Ox(YP)  (8a) 

+ C3xfp + C~x[yp - ( y p ) ]  = -~?xyP (8b) 

For small noise one may neglect the higher order term yp in (8b), 
obtaining the solution 

p= -Ear+ C~xf] 10xy P (9) 

In one dimension the operator [Sr+C3xf] -~ can be inverted explicitly, 
integrating over the trajectories of the "deterministic" system dx/dT=f(x) .  
Introducing the auxiliary variable u = ~ dx/f, we can transform (9) into 

rr dt' 
P= -Jo ~ 8 " P ( u -  t ,  T-- t ') y( t ' )  (10) 

Now, to lowest order in a 2, but in principle, for arbitrary correlation time, 
the dominant contribution to p comes from the free trajectory 

f(u) P(u--t' ,  T -  t ' ) = - -  P(u, T) (11) 
f (u - - t ' )  
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Substituting (11) in (10) and then introducing it into (8a), one finally 
obtains 

where 

"J- (~xfP = IG2 OxxD(x) P (12) 

r . f ( x )  
D(x) = fo dt C(O, t) f ~ _ i )  (13) 

where x_ ,  is the image of x, following the free motion, at time - t .  In the 
simplest case of a linear system f ( x )  = -cox, the diffusion term reads 

D(x) = dt C(O, t) e ~ot (14) 

and (12) gives the exact result, as we show below (Section 3). However, in 
a more general case, for a system having unstable fixed points, the diffusion 
diverges, and (12) becomes meaningless. Indeed, near the unstable fixed 
point xu = 0, f ( x )  = ax (a > 0), and x , approaches x .  as e - " '  for arbitrary 
initial x; therefore, the diffusion behaves as 

D(x) = act C(O, t) e a' (15) 

and this integral is in general divergent. For instance, when the correlation 
function decays as e % we see that (12), which holds formally for arbitrary 
a, in fact may only describe the behavior of the system for sufficiently small 
correlation times. In this case, taking, for example, an exponential 
correlation function, one may expand D in powers of the correlation 
time (12) 

D(x) = Do[1 - zf '  + O(v2)] 

For  a bistable potential [ f ( x ) =  x - x 3 ] ,  the activation rate becomes 

(16) 

f ~ ,  f ( x )  l dx f (X ) (1  _~2f,2) (17) 
a x ~ ) = ~  Do 

and we find that it decreases with r. This contradicts the fact that, at a 
given unperturbed diffusion a 2, an increase of the correlation time filters 
the large fluctuations and therefore would lead to an increase of the 
activation rate. We demonstrate in Section 4 that effectively the activation 
rate should grow with r. Therefore, even for small correlation times the 
master equation fails to describe correctly non-Markovian effects. The 

822/50/'3-4-7 
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point is that it is not possible to expand a diffusion operator perturbatively 
in powers of the diffusion coefficient in such a way that the series converge 
for arbitrary long times (typically T>  l/a). 

3. T H E  F U N C T I O N A L  I N T E G R A L  M E T H O D  

For the sake of completness, we derive in this section the relevant 
formulas connecting the solution of the stochastic equation (1) to the 
transition probability P(X, TlX0) by means of the functional integral 
formalism. (13-16) We start, as in Section2, from the noise-dependent 
probability density py(X, T[ Xo)= b[X-xy(T, Xo) ], where a path between 
the extremal points X0 and X is considered; xy(T, Xo) is a solution of (t). 
We can represent py in terms of a b-functional in the form 

py(X, T[ Xo) = f Dx b[x - xy(t; Xo)] (18) 

Now, using (1), we can explicitly write the dependence on the noise y, 

py(X, TIXo)= Dxb[2- f (x ) -y]  J (19) 
0 

where J is the Jacobian of the transformation xy~y=dx/dt-f(x),  
x(0)  = Xo, 

1 r 
J =  det(c~,) exp I -  ~ f ~ dtf'(x)] (20) 

Expressing the b-functional by its Fourier transform, we obtain 

p,(X, r l  Xo) = Dx D 
0 

x exp I /fo d t z (2 - f - y ) ] exp ( - -~  

where the formal det(•,) is absent, and consequently (21) is well defined. 
Next, we have to take the mean value of py over the noise probability 
distribution, 

[ 1 f~dtdt'y(t) C ~(t,t')y(t')] (22) P[y] = N e x p  - 2or-- 5 

C -1 is the inverse of C, and N=[det(O,/2~r ~/2 a normalization 



Bistability Driven by Correlated Noise 573 

constant. The resulting Gaussian functional integral is readily performed, 
giving 

P(X, TI Xo) = Dx D 2-~a 2 
o 

where we have used the scaling z ~ z/a 2, and 

S=-~ (z, Cz ) - i  d t z ( 2 - f ) + - ~  dt--dx (24) 

where, in order to simplify the notation, we introduced 

Jo;o (z, Cz) = dt dt' z(t) C(t, t') z(t') 

The fact that the action S=S[x, z] is nonlocal, related to the non- 
Markovian character of noise y, implies that the stochastic process x 
cannot be described in a closed form by a Fokker-Planck-like equation. 
This type of equation can only take into account finite-time effects, or 
Gaussian fluctuations around stable fixed points. As we have noted in 
Section 2, the long-time behavior is dominated by large-deviation events, 
with exponentially small probabilities p~exp(-S/~r2), where the global 
dynamical properties of the system enter into play. 

We shall illustrate the functional integral formalism, solving exactly a 
linear stochastic process for arbitrary correlations and arbitrary time. In 
this case the transition probability is given by 

; s  l l l 
P(X, rl Xo)  = Ox D 2--~5a2 exp - -f~a2 (z, Cz) 

~r 2 d t (2-z )  x exp exp[i(ZX-ZoXo)] (25) 

where we have integrated by parts the term z(dx/dt), Z=z(T), and 
Zo = z(0). The integration over x can be immediatly performed, 

P(X, Tp Xo) = f Dz det c?, a [ 2  - z ]  
2nor 2 

1 Cz)l exp T i x exp I -  ~-5a2 (z, ~ [-~+-~-5(ZX-ZoXo)] (26) 

Now, transforming the a-functional 

det(c'~t)a[2--z]=er/2a(z--Zoet)=e r/2a(z--Ze '-r) (27) 
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we reduce the functional integral into an ordinary one 

P(X, TI Xo) = f dZ i T 2_7_~a2 exp I__~( X _  Xoe ) Z ] e x p  I D( T) 2a 2 Z 2] (28) 

where D(T)=e-2T(e r, CeC). Doing the Gaussian integration, we finally 
obtain 

exp[ - ( X -  Xoe- r)2/2a2D( T) ] 
P(X, TXo)- [2rca2D(T)]l/2 (29) 

This is an exact result, independent of the explicit form of the correlation 
function and valid for every time T. The white noise limit C+6( t - t ' )  
gives D(T)= 1 -  e 2r, and for exponential correlation C =  (cr =l,I we 
find 

l l - e  2T "C 
t- [e (l+l/z)T--e-2T] (30) 

D(T)=  2 l + r  

and the stationary probability is given by 

#(X)=(l + *)~/2 ( 1+ ~ ) 
(r~a2)l/2 exp 0 2 X 2 (31) 

It is worth noticing that for linear stochastic processes we find the same 
effective diffusion coefficient we had derived for the master equation. This 
demonstrates that Gaussian fluctuations in the neighborhood of a stable 
fixed point are appropriately described by this model. However, while the 
functional integral allows us to derive in a simple way the explicit 
expression of the transition probability, it is not evident how to solve 
master equation for arbitrary correlation functions. 

4. A C T I V A T I O N  RATES FOR BISTABLE S Y S T E M S  

In what follows we analyze the long-time behavior of a stochastic 
bistable system. This concerns the study of quantities such as the stationary 
probability distribution and first passage times between stable fixed points. 
In the general case, the drift force f(x) is nonlinear, and exact results 
cannot be obtained. Then, it becomes necessary to develop approximate 
methods to evaluate functional integrals. However, because of the presence 
of large deviations it is not possible to solve the stochastic equation using 
perturbative expansions. In order to extract the leading a dependence the 
appropriate method to apply is Laplace evaluation of functional integrals, 



Bistability Driven by Correlated Noise 575 

in the same way as one proceeds in the simpler white noise case. (18'19) That 
is, the principal contribution to the transition probability, represented by 
the functional integral (23), comes from the path that makes the action 
(24) minimal. Therefore, the relevant trajectories satisfy the following 
Euler Lagrange equations: 

2 = f - i ~  r2 dt' C( t , t ' ) z ( t ' )  
- rl (32) 

~.= - f ' z ,  x ( - T , ) = X o ,  x ( T 2 ) = X  

Using these equations of motion, one can rewrite the action in terms of the 
solution zc = z,.( t; Xo, X), 

S(X, Xo)= -�89 Czc) (33) 

We remark that, making the Gaussian integration over z in formula (23), 
one obtains an action functional S = � 8 9  C - l ( x c - f c ) )  in the form 
discussed by Freidlin and Wentzell.(7) However, in our case it is convenient 
to conserve the variable z, because it greatly simplifies the calculations. In 
general C i is not easy to obtain, but the two formulations are obviously 
equivalent. 

To determine kt(X), one has to consider T ~  0% and then the trajec- 
tories pass a long time around fixed points. If X belongs to the attraction 
basin of a stable fixed point s, it suffices to take into account trajectories 
that leave s, and then to make T1 ~ oo in (32). In the particular case that X 
is itself a stable fixed point (T1, T2 ~ oo), the relevant trajectory is of the 
instanton type, but in principle multiinstanton solutions of (32) also 
contribute to the stationary probability. In general, the way the stationary 
probability builds up can be modeled by a system of rate equations 
involving the statistical weights Pi of the stable fixed points si. In a system 
with two stable fixed points separated by an unstable one u, a multi- 
instanton trajectory is of the form s~ ~ u ~ si2 ---" . "  ~ SiN. A Poissonian 
statistics is established; thus, 

b~ = -p~/O~ + p2/02, t52 = -/}~ (34) 

where Oi are the characteristic transition times. The precise way in which 
this relaxation dynamics is set up depends on the contribution of each 
instanton to the stationary probability and will be detailed in Section 5.3. 

Knowing the invariant measure of the simple path sl --* X, #~(X), it is 
easy to find the stationary probability in the attraction basin of s~, using 
(34): 

~,(x) = p~(~) #~(x) (35) 
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In turn, calculation of the activation rate only implies solving (32) for a 
simple trajectory connecting the stable to the unstable fixed points, since it 
is defined by the formula 

S = lim - 0 -2 In ~I(X) (36) 
o - ~ 0  

and then only the exponential factor in # contributes. 
The integrodifferential equation (32) cannot in general be solved 

explicitly. Hence, we first study its asymptotic regimes and then we use 
piecewise linear functions f ( x )  to solve (32). 

Take a bistable system and assume an exponential correlation function 
C(t, t'). We shall find the activation rate for small correlation time. In the 
neighborhood of the fixed points, f ( x )  behaves as 

f ~  - b ( x - s ) ,  f ~ a ( x - u ) ,  x ( - T ) ~ s ,  x ( T ) ~ u  (T--* oe) 

(37) 

In the limit T---, oc the solution of the equation for z is of the form 

~e at l---+ OO (38) 
Z ~ ~ebt t -'+ - -00  

This exponential behavior allows us to expand the kernel C in the sense of 
distributions, 

C = 6(t - t') + r2~'(t - t') + -.- (39) 

It should be emphasized that (39) does not hold in general (if X is not a 
fixed point). Using (39), the action (33) splits into a white noise part and a 
perturbation O(r2), S = So + r26S, where 

6S = - l ( z ,  ~2&) (40) 

To find the dominant correction in ~2, it suffices to replace the extremal 
trajectory zo = -2/ f ,  dxo/dt = - f ,  related to So, in aS. After integration by 
parts one obtains 

a S =  -2"c 2 d x f f  '2 (41) 

and then, in the small-correlation-time limit, the activation rate is given by 

S = - 2  d x f ( 1  + z2f,e) (42) 



Bistability Driven by Correlated Noise 577 

( f <  0, for s < x < u). In the other relevant limit of large correlation time, 
the kernel behaves as C ~  1/(2r), and the activation rate then reads 

S = r f~  (43) 

where fM is the maximum of if[ in the interval (s, u). This obviously 
corresponds to a static Gaussian drift, with mean value a2/2~, which must 
overcome fM. 

Now we calculate explicitly the activation rate, using as a simple 
model of a bistable system a piecewise linear function (see Fig. 1) 

I 
- 2 ( x + l )  - o 0 < x ~ < - 5 / 6  

f ( x ) =  - 1 / 3  - 5 / 6 < x ~ <  -1 /3  (44) 

x - 1 / 3 < x ~ < 0  

for x ~< 0, and f ( x )  = - f ( - x ) .  This function approximates f ( x )  = x - x 3 in 
such a way that in the limit of white noise one obtains the same result for 
the activation rate. 

The solution of the equation of motion for z, z=zc( t ) ,  is readily 
obtained, giving 

l iZe 2t t < 0 

zc(t) = iZ  0 < t < u  (45) 

iZe (t u) u < t < T  

where we have introduced three parameters Z, u, and T, which are deter- 
mined by the matching conditions at the singular points - 1 / 3  and -5 /6 ,  
and by the boundary condition x (T )  = X (T--* oo, X-*  0). Substituting (45) 

~ X 0  

f(x) 

x x 

0 tl3 516 

i ~(t) \ 

Fig. 1. The piecewise model for a bistable dynamical system used in the analytical com- 
putations. In the white noise limit this model gives the same activation rate one would obtain 
for a drift f ( x ) =  x -  x 3. The trajectory z ( t )  of a path s--* X is plotted. 



into (8a) and solving the differential equations, one get these conditions in 
the form of the following transcendental equations: 

g = "c/3I 1 

0 = ( 1 / 6 ) ( 1 2 / 1 1  + 3 - 2u) - 1 

X =  ( I 3 / 6 I  1 - -  1/3) e r - u  

(46) 

(47) 

where 

r l + 3 r  1 - e  u/~ e_U/~ 
I i  = @ T3 - -  .,(2 co-(1 + I/'c)(T-- u) 

2 (1 +r ) (1  + 2 r )  (1 +r ) (1  + 2 r )  (1 +r ) (1  + 2 r )  

12 2ur - -  ~3 (3 + 4"C)(1 -- e-U/~) __T 2 _ _  
(1 + z)(1 + 2"0 1 + z 

1 - -  e u/r 
co - (1 + I / - ~ ) ( T -  u)  

l + 3 v  1 - e  "/~ r 
[3 = "t" l- 2"c 3 - -  e - 2 ( r -  ul 

(1 +r ) (1  + 2 r )  (1 +z)(1  + 2 r )  1 + r 

(1_-[- 5"6 ) e (1 + 1/~c)(T--u) 

+ \  1 - r  2 + 2 e  ~/~ ( l + r ) ( l + 2 z )  

(48) 

In terms of these parameters the action related to the path -1 - -*  X~<O 
reads 

z[u ] S ( -  1, X) = ~  1 + ~ + X e  -(T-~) 

1.8 

u) 

1.4 

0 1 2 3 
T 

578 Luciani and Verga 

Fig. 2. Pattern of the activation rate S(z) for the drift function of Fig. 1. 
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In particular, the activation rate is S(r) = S ( - 1 ,  0) (Fig. 2). 
asymptotics of S(r) are 

S(~) = 

1 3 + 4 r  
-~ + ~2 3(1 + 2.c)(1 +.c) z ~ l  

1 T 
g + g  ~ > l  

This behavior is consistent with (42) and (43). 

579 

The 

(49) 

5. S T A T I O N A R Y  PROBABIL ITY A N D  T R A N S I T I O N  T I M E  

5.1. The Invar iant  Measure  outside Unstable Fixed Points 

Now we turn our attention to the computation of the invariant 
measure #(X) if X is not a fixed point. We take - 1 / 3  ~< X <  0. The leading 
exponential contribution has been computed in Section 4; so we are left to 
study the Gaussian fluctuations around the classical trajectory. Let 

X = X c + ~ ,  z = z c + r l  (50) 

where (xc, zc) is a solution of the equations of motion in the interval 
( - 0% T). The invariant measure at X is then given by 

Iz(X) = P(X,  TI - ~ ) = K exp( - S ffa 2) (51) 

At leading order in o-, the prefactor K reads 

i '4 
• 

l c.)] 

(52) 

where the boundary conditions are 4 ( - G o ) =  r  0. We remark that f "  
can be written 

f "  = [2/12c(0)[] 6 ( t ) +  [1/12c(U)[] 6 ( t - u )  (53) 

for our piecewise linear model, and then the conjugate variable t /must  be 
discontinuous at t = 0, u. This allows us readily to transform the functional 
integral (52) into an ordinary one, integrating first over r and then over q. 
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A detailed account of the calculation is given in Appendix A. The 
integration over ~ generates a h-functional of the form 

1-I a[il +f,(tl] I] 6[0 + f ' q ]  F[ a[O +fc!q] (54) 
te(--~,O) te(O,u) t e (u,m) 

One can pass from dtl/dt to t/ by solving the differential equation for t/. 
Introducing appropriate jumps A I and A2 at the singular points 0 and u (cf. 
Appendix A), one has 

l he ' t~ (-oo,03 
t/a(t) = h+A~ te(0,  u] (55) 

(h + A~ + Aa) e-' t ~ (u, T] 

where h is an intermediate value, r/(0)= h. The Jacobian of this transfor- 
mation is given by 

where care should be taken with the sense of time propagation: forward in 
the interval ( - o% 0), backward in [0, T]. After these steps, we finally find 

,, d2A d2~ ~ B(h, A, 3)] (57) 
K = f  a n ~ e x p k - ( T - u ) ] e x p [  ~2 

where B is the bilinear form in h, A, and 4: 

B =  1/2(q~, Cqa)-iAl~1-iAz~2--3Z~Z--3/2Z~ (58) 

5.2. Col lect ive Coordinates and the Invariant  Measure  at the 
Unstable State  

In the limit T ~  0% the final point X approaches the unstable fixed 
point and the bilinear form B becomes degenerate, making the Gaussian 
integral (57) meaningless. The appearance of an exponentially small eigen- 
value is related to the approximate time translation invariance (small ~) of 
the classical trajectory. Thus, in the vectorial space displayed by B, a direc- 
tion arises where the assumption of small Gaussian fluctuations around the 
classical trajectory breaks down. This direction is defined by the eigen- 
vector xo= (dxc/dT*, dzc/dT*), where T* parametrizes equivalent time- 
translated trajectories. It then becomes necessary to treat separately the 
degree of freedom associated with time translations. 
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Following the method of collective coordinates, (9'1~ we introduce a 
"gauge" condition of the form S dT* 6 [ (x l  I Xo ) ] (x01Xo ) ~ 1, where ( .  l" ) 
is an arbitrary scalar product and xl is the vector (~, t/). It is worth 
noticing that, due to the fact that the action is nonlocal, the relation 
between (Xo[Xo) and S is not trivial. Moreover, in contrast to the 
commonly encountered situation where a global factor T* is obtained, the 
presence of the Jacobian term ~ e  T introduces an explicit dependence on 
T* (after the shift T ~ T - T * ) .  This means that the translational 
invariance is broken at a 2 order. Therefore, the limit T ~  oo must be 
carefully carried out, taking into account the action at finite time. 

The simplest way to proceed is to consider the infinite-time classical 
trajectory and to truncate it at t = T* - T, T*, adding jumps to match with 
boundary conditions. Taking T fixed and varying T*, one obtains trajec- 
tories that differ in their discontinuities at the boundaries. The action S* 
related to this truncated motion is S* = 2 S ~  +l(z c, Czeh,,j, where S~ is 
the action for infinite time and the second term is the action in the interval 
I = (T* - T, T*) (see Appendix B for a complete calculation). In this way, 
fluctuations can be treated as before, using vanishing boundary conditions, 
without adding supplementary contributions coming from integration by 
parts terms. Putting all this together, the limit T-~ ov of Eq. (57) is written 
in the following form: 

p(O) = T--~lim dT* e x p ( -  T*) exp ~r 2 

• f a n ~ o [ _ ( x l l x o ) ] ( X o l X o ) e x p  - - ~  (59) 

where the action S* is given by 

S*=S~+2Z2 ~ - 1  2 ~---2-i - 2 ( 1 - e - ~ " )  ( c~+ l ) ( e+2)  (59a) 

v is exp( - T*) and B is the bilinear form of Eq. (58) in the limit T ~  ~ ;  we 
write it after formal (analytic continuation is necessary) integration over 

Bll BI2 B13 ) 

B =  B12 B22 B23 
B13 B23 B33 

6 

n=l 

B22=c3+cs+c6+dl,  B23 = c6 +-~, B33=c6+d2 (59b) 
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where 

1 -- e "~ u 
cl 4(~ + 2)' c2 ' C 3  - -  c~+2 2 

c~e-~U 1--e ~u 
C4 = (~ -~- 1 )(~ + 2) '  C5 -- - - ' ~ - ' ~ 1  

_ ?_ ) d I = --~ + 1 c~ + ~  

- -  e - ~ "  

C6-- 2(~ + 1) 
(59c) 

1 (  e --e ~ + ~ e  ~ 2 )  
4 =  1 3-z 

We recall the origin of each term in formula (59): there is a contribution of 
the classical trajectory to /~(0) given by S*, which takes into account the 
finite-time effects; fluctuations around the classical trajectory are given by 
the second-order action B, which, after reduction of the original functional 
integral into an ordinary one integrating the linear pieces of f,  becomes a 
bilinear form depending on the coordinates associated with the discon- 
tinuity points of the perturbed (Gaussian) trajectory; the collective motion 
is separated from the other modes by means of the b-function, which allows 
us to treat exactly the approximate time translation invariance of the 
classical trajectory in such a way as to obtain a finite result; the integration 
over the collective mode is given by dT* exp( -T*) ,  where e x p ( - T * )  is 
the Jacobian factor coming from the Dr/ functional integration. 

Equation (59) straightforwardly reduces to an ordinary integral 
representation of #(0); the Gaussian part gives Idet BR]-1/2, where BR is 
the bilinear form reduced to the subspace "orthogonal" to the zero mode. 
Taking h = 0 as the gauge condition, one obtains 

22/3Z 
- 1/2 f l  S*(v)  

#(0) = (rca 2 did2) m [det BRI "~o dv exp cr 2 

( B22 B23"~ (60) 

BR = \B23 B33j 

When the correlation time crosses the value 1, the bistable dynamical 
system passes from a state of normal dissipation to another state of 
negative dissipation. The invariant measure at the stable fixed point is 
insensitive to this change, and fluctuations remain essentially Gaussian. In 
contrast, the stationary probability at the unstable fixed point behaves 
differently, depending on the actual dissipation regime. While for short 
correlation time, #(0) depends on the noise intensity in the same way as 
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kt( - 1 ), for large correlation times, non-Gaussian fluctuations dominate the 
prefactor, and an anomalous a dependence of the form a ~1- ~)/r +~) appears. 
This can be seen using formula (59a): for ~ ~ 1 the action is dominated by 
the v ~+~ term, which after integration gives 

#(O)//t( - 1 ) ~ C,(~) a {' - ,)/(1 + ~) exp( - Soo/a 2) 

where C~(~) is a constant, which only depends on the form of f and on the 
correlation time. In contrast, when a ~> 1 the term v 2 dominates and one 
has 

# ( 0 ) / # ( -  1 )~  C2(a) e x p ( -  S~/a 2) 

with normal prefactor. 

5.3. First Passage  Time 

For a white noise, the transition time between the two stable fixed 
points is generally computed as twice the exit time from the domain 
( - ~ ,  0], using the Kolmogorov backward equation. But in our case the 
simplest way is to compute the first instanton contribution and study the 
building up of the dynamics of the transition probability 
P(T)=P(s2, T/s~). We shall demonstrate that a Poissonian statistics is 
established, which means that the transition probability as a function of T 
is exponentially distributed. Therefore, it satisfies a differential equation of 
the type of (34). Assuming a Poissonian statics, it suffices to expand P(T) 
in powers of T, and retaining the first term, one obtains the transition time 
from the formula 

T 
P(s,, TI s2) ,~ -~ I~(s2) (61) 

where #(s2) is the measure corresponding to local Gaussian fluctuations 
around s~. At variance to what happened with #(0), here two collective 
degrees of motion should be taken into 5_ccount. The relevant trajectory is 
essentially formed by the instanton sl ~ u followed by the deterministic 
dx/dt = f  motion connecting u to s2. In order to treat the limit T ~  
properly, let us consider the truncated trajectory of Fig. 3. The labeled 
minus ( - )  trajectory is the instanton, the plus ( + ) trajectory is the deter- 
ministic motion. The two collective modes are parametrized by T~ and T> 
We denote by bl and b2 the slopes o f f ( x )  in the regions T1 and T2, respec- 
tively. The position T o of the central discontinuity is irrelevant. An outline 
of the computation together with the explicit white noise case is given in 
Appendix C. Let us summarize the principal steps: 
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1. The collective mode corresponding to a global time shift (T2) 
contributes, as usual, with a factor T. 

2. As for the computat ion of /~(0) in Section 5.2, the invariance 
related to a dilatation of Tt is broken by the Jacobian term. However, in 
contrast to what hapened with kt(0), this does not lead to an anomalous 
scaling of the prefactor. This mode contributes through an integral 

fdTlexp(_bIT1)exp I C ] a2 -- ~5 e x p ( - b ~  T~) (62) 

where C is a constant. 

3. One can factorize the ( + )  and ( - )  contributions with an 
appropriate  choice of the gauge conditions. The ( + ) contribution builds up 
#(s2). The ( - ) sector contributes through the quadratic form B of Eq. (58) 
with the same gauge condition as in (59). 

In this way we get the simple result 

P(s2, TIs,)= (T/2=)#(s2)(det BR) -1/2 exp(--Sov/o "2) (63) 

Thus 

0 = 2n(det BR) 1/2 exp(S~/o 2) (64) 

Now let us return to the multiinstanton contributions. They arise from 
all trajectories connecting s~ to s2, crossing the unstable fixed point, or 
"reflecting" on it. In this last case, a factor - 1  appears, imposed by the 
conservation of probabilities, and should be obtained by a suitable analytic 
continuation, which we do not discuss here. In this way, one can check that 
the formal expansion of the solutions of (34) in powers of T is obtained. In 

" x ( t )  

| 

T 1 
: 4 

"r 2 

~ x  

- =  0 T O t 

Fig. 3. A scheme of the truncated trajectory used in the computation of the transition time. 
The two parameters T 1 and T 2 related to the collective degrees of motion are specified. 
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our case 01 and 02 are equal, but the general asymmetric potential can be 
treated as well. In such a case 01 and 02 would be given by a formula like 
(64), with B and S replaced by similar quantities corresponding to each 
potential well. For instance, consider the dynamics up to second order in T. 
We obtain for the statistical weights P1 and P2 (starting from sl) 

P1 = 1 (5' 1 -'+ S1) 

- T/O~ ( s l  -- '  u ~ s l )  

+T2/202  (s1--+ u-+ s1---~ u--+ Sl) 

+T2/20102  (sl --+ u--+ s2--+ u--+ sl)  

P2 = T/01 (sl ~ u --+ s2) 

- T 2 / 2 0 2  (s 1 - '+ b l - +  S 1 ---+ U ---+ $2 ) 

- -T2/20102 (sl --* u--+ s2--+ u ~ s2) 

(65) 

where we have written in parentheses the trajectories related to each 
contribution. We see that (65) effectively reproduce the first terms of the 
series solution (in powers of T) of Eqs. (34). 

5.4. Numerical Simulations 

We performed a series of numerical simulations of Eqs. (1)-(2) using a 
second-order Runge-Kutta method. (2~ We made diagnostics of the 
invariant measure and of the transition time. Typically 108 time iterations 
are necessary to reach statistically relevant results (Poissonian statistics on 
the transition time). 

Figure 4 shows the stationary probability at the unstable point. We 
plotted 05 =20 -2 l n [ # ( s ) / # ( u ) ]  as a function of 20- 2 for several values of ~. 
The region of small noise and large correlation time remained unexplored 
due to the excessive computational time required. Our purpose, rather than 
making a thorough numerical analysis of the problem, is to test the theory. 
We proved the performance of the analytical calculation in the region 
where it is more sensitive to the details of its dependence on the correlation 
time, that is, the region around z ~ 1, which distinguishes the negative from 
the positive dissipation regime. Moreover, the contribution of nonlinear 
terms to /~(u) is more important than outside the unstable fixed point, 
where the invariant measure is dominated by local trajectories. We also 
compared the calculated/~(x) (x r u) with simulations, obtaining complete 
agreement. 
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O 

3 .r = 3 ~ o  

o ~ 

J J 

.2 ,4 .6 
7.o 2 

Fig. 4. Numerical  simulation of Eqs. (1) and (2) w i t h f ( x ) =  x - x  3. Invariant  measure  at the 
unstable fixed point,  r = 2a ~ ln[ll(s)/l~(u)], as a function of noise intensity G and correlation 
time r. Straigth lines are the analytical results, open circles are the numerical  values. 

In general the theory agrees very well with numerical calculations, 
especially for relatively small noise, for which discrepancies are at most on 
the order of 10%. With regard to transition times, plotted in Fig. 5 
[-O=2~rZln(0/0o), where 0o is the white noise transition time], the 
agreement is also acceptable. The invariant measure seems to be more 
sensitive to the adopted form of f (x)  than the transition time. Numerical 

T=3 o 

e 2  T=~ 

.2 .4 .6 
202 

Fig. 5. The same as in Fig. 4 for the transit ion time, O = 2a 2 ln(0/0o). 
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simulations using the same piecewise linear function as in the theory match 
exactly with analytical computations for both invariant measure and 
transition time. 

We give an interpolation formula for the transition time, which may 
be useful for comparisons with numerical computations of a bistable 
system dx/dt = f(x): 

0~2~  l+[ I f ' ( s )+ l f ' ( u ) l ]  J exp So l + a ~ ) ( l + b r ) ]  
If '(s)f '(u)l ~-5 1 +(a+b-))-  J (66) 

where 

and if(s) and if(u) are the derivatives o f f  at the stable s point and at the 
unstable u point, respectively, and So = 2 ~s ~ d x f  is the activation rate for 
the white noise. This estimation is obtained from the exact expression of 
the transition time given in Ref. 8, where f is approximated by a piecewise 
linear function with only three pieces. We have kept the same functional 
form for 0(T). For the activation rate, the constants are chosen in order to 
match with the asymptotic values (42) and (43). The prefactor is indeed 
dominated by the local values f(u) and f(s). 

In recent work Hanggi eta/.  (6'21) have treated the same stochastic 
problem, using a closure hypothesis to obtain a Markovian approximate 
Fokker-Planck equation. They find that non-Markovian effects can be 
described by a modification of the diffusion coefficient 

D(r) = D(O)/(1 -- z ( f ' )  ) (67) 

and therefore they conclude that the magnitude of the ratio of the 
stationary probability taken at the stable state and the unstable state or the 
transition time is essentially dominated by the activation rate. Although 
their ansatz produces activation rates that grow with correlation time, 
improving the usual theory based on an expansion around the white noise 
limit, it is quantitatively unsatisfactory. First, the asymptotic form (43) for 
large r is obvious in the static limit, and is not reproduced by this ansatz. 
Second, their activation rate, being linear in r, fails to appropriately 
describe the right S=So[1 + O(T2)] behavior for small correlation time 
clearly seen in Figs. 4 and 5. In fact, the contribution of the prefactor is 
also quantitatively important for describing the system's behavior. For 
instance, the invariant measure at the unstable state develops an 
anomalous a dependence, which comes from the prefactor and is absent in 

822/50/3-4-8 
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the transition time. On the other hand, the closure hypothesis simply 
predicts a constant prefactor for the transition time, thus giving parallel 
straight lines in a figure such as Fig. 5, in contradiction with simulations. 
Therefore, we may conclude that the overall pattern of the invariant 
measure and transition time as functions of noise intensity and correlation 
time is influenced by the prefactor for the numerically accessible range of 
parameters. Only in the noiseless limit does one recover the dependence on 
the activation rate, behavior that obviously cannot be isolated in numerical 
calculations. 

6. C O N C L U S I O N S  

The long-standing problem of a bistable dynamical system undergoing 
non-Markovian random perturbations has been studied using the 
formalism of the functional integral. We have demonstrated that starting 
from the exact transition probability allows us to overcome the inherent 
limitations of other methods such as those using master equations or the 
closure hypothesis. The functional integral directly gives the dominant 
dependence on noise intensity for arbitrary correlation time, thus taking 
properly into account the large-deviation contributions, which determine 
the long-time behavior of the system. 

We analyzed the invariant measure and the transition time, first 
deriving the so-called activation rate (exponential asymptotic) and then the 
fluctuations around relevant trajectories (prefactor contribution). At the 
level of the activation rate the shortcomings of the master equation were 
made apparent, demonstrating that this approach does not succed in 
describing the system's behavior near unstable fixed points. For instance, 
the first contribution of non-Markovian effects, assuming small correlation 
times, derived from the master equation, gives a correction to the white 
noise result with the bad sign. On the other hand, the closure scheme, 
giving an activation rate increasing with correlation time, fails to reproduce 
the right O(~ 2) asymptotic. 

The computation of the prefactor contribution comes up against the 
problem of the collective degrees of motion resulting from the time 
translation invariance of the classical trajectory. In order to describe the 
fluctuations appropriately it becomes necessary to introduce a constraint 
(gauge condition) which selects among all the equivalent trajectories such 
that the deviation between the actual trajectory and the approximate 
classical one is minimized. In contrast to the usual quantum mechanical 
situation, in the classical problem, where a stationary probability 
distribution exists, two types of collective motion can be distinguished (in 
relation to a bistable potential). While the motion connecting the stable 
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fixed points generates a global factor T in the same way as it appears in 
quantum systems, the motion from a stable fixed point to the unstable one 
gives a finite contribution. In the case of the invariant measure at the 
unstable fixed point a qualitative change of behavior arises-when the value 

= 1 is crossed, which (linearly) separates the negative and positive dis- 
sipation regimes. For z > 1 there is an anomalous dependence on the noise 
intensity of the form ~o-~)/(1+~), which means that the usual perturbative 
series in powers of ~ do not work. 

A series of numerical computations was performed and compared with 
analytical results. A satisfactory overall agreement between simulations and 
the functional integral theory was obtained. Is is worth noticing that the 
role of the prefactor is important to an understanding of the behavior of 
the non-Markovian system. For instance, the anomalous form of the 
invariant measure at the unstable point seems difficult to obtain by any 
closure scheme. 

A P P E N D I X  A 

Consider the Gaussian functional integral for the prefactor, which we 
rewrite here for the sake of completeness: 

K = e x p ( - - ~ f d t f j )  fD[2-~a2]exp[--2@5(tl, CtT)]I(tl) (11) 

where 

I(t/) = D~exp - ~ f d t t l [ 4 - f ~ ' ~ ] - T ~ 2  (A2) 

and closed trajectories ~ ( -  oo)= ~(T)= 0 are taken. For a piecewise linear 
function with N singular points located at xn=x(tn) (n=  1, 2 ..... N), 
characterized by the set (bo ..... bN) of slopes between xn and xn _ 1, we have 

where 

N 

i f dt .... 2 zcJc g = - 2  an~ (A3) 
n = l  

Z / /  
a n = - -  (Af'). (A4) 

I~,,I 

with (Af')n=bn-b. 1 the discontinuity jump of f '  at xn and 
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Z ,  = -iz~(tn). Hence, the Hamilton equations related to this second-order 
action are 

( .  

- f ' ~  = - i  ] dt' C(t, t') q(t') 

N (A5) 

0 + f / q = - ~  an6 ( t - - t , )  
n = l  

From the second of these equations we note that conjugated to each 
variable ~,, a discontinuity appears in the function q(t), which we denote 
An. In contrast with the usual method for integrating Gaussians, via 
integration of the motion equations (A5), we shall use a simpler procedure, 
taking advantage of the special form off,  consisting in integrating first over 

and then over t/. In order to make the ~ integration we start by 
integrating by parts the term (d~/dt) th which gives boundary terms of the 
form ~n An. We get 

o { ] /(")=fl D~exp - fdt[O+Z:n]  exp ~-~n~ ( i ~ n J . + ? ~ 2 )  

(A6) 

and hence 

dN~ exp ~ ( i ~ , A , + ? ~ 2 , )  (a7) I ( , ) =  C6~N)(O + Uc',) 
n = l  

Here C is a (singular) constant of the form [det(u)(27~azc3t)], where the 
index N means that the factors at times t~ are excluded. We note that, due 
to the fact that the signs of the a n are arbitrary, it is better to leave the dX~ 

integration implicit. Now we transform the &functional, expressing it as a 
function of q~(t), the solution of (A5) between discontinuities: 

he b~ t e ( - oo, t l ) 
(h + A 1) eb'('-tl) t e (tx, t2) 

r/3(t) = (A8) 

( h + A j + 3 2 +  . . .  -4-Au) e bN(t gN) t G ( t u ,  T) 

This transformation causes a Jacobian term to appear. For forward time 
propagation t?;:l = O ( t - t ' ) ,  we obtain 

J -~  = det~)(O,)exp (~ f d t f ' )  
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whereas for backward propagation one has ~c 1= -O(t'-t), and the sign 
of the exponent changes. We used the identity 

det(1 + M) = exp[tr ln(1 + M)]  

and 0(0)= 1/2 (Stratonovich integral). Having taken the "initial" condition 
at the intermediate time t = tl, we find the Jacobian 

J-l=det(~)(Ot)exp(~ftl dtf'-~f,~dtf ') (A9) 

and I(r/) finally becomes 

I(/7)= ~ (2go "2) exp (~ ftt dt f '-~ f,: dt f') 6(u,(~l-q~) 
a, 2\q x;dU:expf~ ~, (i~,,An+ff~)J (AIO, 

n = l  

The remaining integration over r/ outside the singular points is now trivial 
due to the presence of the 6 in (A10). Inserting (A10) in (A1), we obtain 

exp(-~:dtf')f~ u ( B )  
K -  (2na2)N+ 1 dh [I dr exp --~ ( a l l )  

where B = B(~, 3) is the bilinear form 

l ( a~ 2\ B(~,A)=-~OI~,OI~)- ~ \iA"~"+'~") (A12) 
n = l  

which at finite time T is positive-definite. 

A P P E N D I X  B 

In the limit T--* oe the classical trajectory (x c, z~) becomes invariant 
against time translations. The action remains constant when trajectories are 

---+ X ~ displaced, (xc, zc) ( c, z*) for T ~  T -  T*, with T* the time translation 
parameter and x* =xc(t, T*). The assumption of Gaussian fluctuations 
around this trajectory is then meaningless, due to the presence of a 
vanishing eigenvalue. To overcome the difficulties related to this zero eigen- 
value, it is convenient to introduce a "gauge" condition which makes it 
possible to treat separately time invariance and the other (Gaussian) 
degrees of motion. In fact, for the perturbation expansion to be well 
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defined, it is necessary to choose T* so that the shifted trajectory (x*, z~*) 
most nearly fits the actual trajectory (x, z). Thus, we define a functional 45, 
which measures the distance between these trajectories, 

N 

45(x,z;T*)=fdT*Q([z-z,*[)+ ~ e,[xc(t*)-xn] 2 (B1) 
n--I 

where Q is an arbitrary quadratic function of its argument and the ~, are 
arbitrary constants. For  convenience we have chosen to approach x by 
x*(t) at the shifted discontinuity point t=t*. The minimum of this 
functional gives the appropriate value of T*. To lowest order, the condition 
of the minimum of 45 can be written in the form of the constraint 

~(<x, I xo ))<Xo I xo> 

= ~ < L * l z - z t > Q +  ~ c ~ . l x , ( t * ) - x . I  ~c( t*)  
n = l  

n = l  

(B2) 

where we used 8 r* t* = l, and ( .  l" ) Q is the scalar product associated with 
the metric Q. 

Now we introduce into the functional integral for the invariant 
measure the shift x = x* + 4, z = z* + q; thus, we must calculate the action 
S * =  S(x,*, z*) on a finite interval, making explicit its dependence on T*. 
We use a truncated version of the infinite time trajectory, centered at the 
origin, on the interval defined by I = (T* - T, T*), adding jumps 6x at the 
edges in such a way as to match with the boundaries. Specifically, we have 

S ~ i Z : "2( c, C Z c ) I •  (Zc' C Z c ) I •  - -  i [ z  6X] (B3) 

The boundary term 

[z 6x]  = z (SxIT. - z Oxt~-._ ~ 

is calculated using the asymptotic form o f f ( x )  near fixed points, and the 
result is equal to -i(Zc, Czc)c• (C is the complement of I in the axis R). 
We obtain for S* the expression 

1 Z S* =2Soo +~( c, Czch• (B4) 

Therefore, using the constraint (B4) and taking into account only the 
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lowest order in ~ and t/, we obtain the invariant measure at the unstable 
fixed point in the form 

(S* + L + B[~*, r/* ] ) 
X 6(<X 1 [ XO>)<X 0 [Xo> exp - a2 (B5) 

where B* = B[r ~/*] is a bilinear form for the shifted fluctuations 

BE~,q]=-~(tl, Ctl)--i dt rl(~--f~s ) -  ~2 

It can be easily demonstrated that the linear term L 

(B6} 

L = - i  f dt q(2 c - f )  = -i(tl, Czc)i• 

which arises from the fact that the trajectory we use does not satisfy the 
equation of motion, is negligible at the limit of interest. It should be noted, 
however, that in the case of a trajectory which joins the two stable fixed 
points, this term contributes to the transition probability and must then be 
retained (cf. Section 5.3). 

We note that the choice of the constraint on x using just the discon- 
tinuity points allows us to proceed as before, in the sense that integration 
over ~ can be made directly. After functional integration (B5) reads 

#(O)=l i~m~fodT*exp( - f f*d t f / ) f  

x 6 ( ~ , ~ / ( ( x l l x o > ) ( X o  Xo> exp - 

dN~ dNA 
dh 

(2xo-~)u + 

ES* + B(~, A)] 
0-2 (B7) 

where B is the same as in (AI2) and 6{~,,) is 

L 
~2 c~.2c(t*) ( .  (B8) 

n= l  

The important point now is that one can find a set {Ao} of parameters so 
that dz*/dt =r/z0; thus, the scalar product (&*/d t l t /~>  yields a relation 
between A and A 0. Moreover, due to the fact that both Q and c~ n are 
arbitrary, one can choose them in order to simplify computations. For  
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instance, for the invariant measure at the unstable fixed point, it suffices to 
make all the ~, equal to zero, leading to the final formula 

. r ( :~* ) dN~ dNA 

IS* +B(~, ~)] 
x 6((qzo I t/a ))(t/zo I r/Zo ) exp 62 (B9) 

In contrast, in calculating the transition probability between two stable 
fixed points, one cannot choise :% = 0. Indeed, in the part of the trajectory 
that follows the deterministic system (u ~ s), the variable z(t) essentially 
vanishes, whence the constraint on q degenerates. Therefore, one should 
retain the constraint on x explicitly (cf. Section 5.3 and Appendix C). 

A P P E N  D IX  C 

Consider the truncated trajectory defined in Fig. 3. To zero order this 
trajectory is related to the action 

S (~ 2S~ + l(zc, C Z c ) i x  I - -  i[z 6x] + (c l )  

where I = ( - co, T 1 + T2) and the last term, associated with the ( + ) jumps, 
couples the instanton to the deterministic motion, and is of order 
e x p ( - b l  T1) (bn is the slope of f i n  the region Tn). To first order we have 
the linear terms 

S(~)= (0, Czc)~• - (0, CZ~~215 -- i[q 6x] + (c2) 

the superscript oo means that the limit T 1 ---4 o(3 should be taken. It is worth 
noticing that the boundary term It/fix] + contains not only e x p ( - b l  T1) 

terms, but also terms of the order unity related to the discontinuity in ~/at 
the s2 stable fixed point. Finally, the second-order action is given by 

S~2)=l (rhCq)~•162 ) (C3) 

After functional integration we may replace everywhere r/ by r/z. We split 
the interval I into I + I  +, where I = ( - ~ ,  To) and I + =(To,  T I +  7"2). 
The terms l - x l  give the isolated instanton contribution. The crossed 
terms I - •  I + are irrelevant in the limit T ~  ~ ,  taking into account the 
ordering bl TI-~2b2T2. In the sector I + x I + it is convenient to make a 
shift q~ ~ q+ + Z o  which gives explicitly the contribution of the stable 
fixed point s2 to the action [terms in exp(2b2 Te)]. Integrating these terms 
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out, one extracts the factor #(s2) of (61). This is possible because the gauge 
condition can also be split into a ( - )  sector, where it reduces to that of 
Section 5.2, and a ( + )  sector, where, using the fact that zc essentially 
vanishes, it only depends on ~ at the discontinuities. The integration over 
T2 directly gives a factor T. In turn, the dominant terms that contribute to 
the other collective degree of motion are in C exp( -b~  T~) as the Jacobian 
term; then integration over T 1 gives the coefficient C, which cancels with 
the normalization of the gauge condition. It remains a Gaussian over the 
reduced bilinear form of (60). In such a way one obtains 

P(s2, T[ sl ) = (T/2~)(det BR) - 1/2 exp( -- So~/a 2) (C4) 

Now, we calculate explicitly the transition time sl ~ s2 for a white- 
noise-driven system, 

I - b ( x +  1) x<~ -b / (a+b)=x . ,  

f ( x ) =  a x  - -  X m  < X ~ X m (C5) 
- b ( x -  1) Xm<X 

The action given by (C1)-(C3) reads 

Z l l h 2  (h + A1)2.] 
S = "2  - -  Z X m  e - a T l "~- -4 T "~- --a 

e 2bT2- 1 
q- 2 ~  [ (h+AI+iZ)  e-OTI+A2]2 

where 

al a2 - i~I A~ - i r  ~2--T  ~2 + 6S (C6) 

6S= i(h + A1) Xme aTl 

e 2aTl iaXm 
- (h + A t + i Z ) 2 ~ + - - f f  - [(h +A1 + iZ) e aTl-~ A2] 

The instanton action is S~ = Z/2, where Z =  2ab/(a + b). The terms 6S are 
negligible taking into account the ordering 1/a 2 ~ aT1 ~ 2bT2 ~ exp(1/cr2). 
The appropriated gauge condition is 

r 1) 6(~2) ZXm (C7) 

Making now the shift A 2 ~ A 2 + (h + AI + iZ) e x p ( - a T 1 )  and integrating 
over ~2, using 6(~2), we are left with an integration over A2 of the form 

f dA2exp I exp(2bT2)2b~r 2 A9 2 ] (C8) 
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The Jacobian term is exp(-aT1)exp(bT2) .  Using (A25), the integral over 
(T2, 32) gives T/(2zc0-2b)I/2= Tl~(s2). In turn, the integration over T1 reads 

f e x p ( - a T l ) e x p  - - - ~ - e x p ( - a T 1 )  ~ , Z x  m 

(higher order terms in 0 -2 are neglected) and simplifies with the nor- 
malization of (A24). Therefore the transition time is 

0 = 2~z(det BR) 1/2 exp(S~/0- 2) (A31) 

a result which is formally the same as the one we obtained for arbitrary 
noise. 
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